

Pitch classes and interval classes

- Pitch classes
* There are 12 pitch classes in our chromatic scale-these are numbered from 0 to II
* For example, $\mathrm{C}, \mathrm{B} \sharp$ and $\mathrm{D} \#$ belong to the same pitch class which we call 0
- Interval classes
- Similarly, an augmented unison and minor second belong to the same interval class (both have I semitone)
- We only have interval classes I through 6-for larger intervals, we invert them, so II (M7) is the same as I (m2), IO (m7) is the same as 2 (M2), etc.

Set classes

- You can perform different operations on pc sets such as transposition, inversion, retrograde, reordering or permutation, verticalization, octave displacement, etc.
- All of these pitch class sets are related to each otherthey all belong to the same set class
-It's kind of like a triad-we can invert a triad, space it out differently, transpose it, etc. and it will still be a triad , In fact, all major and minor triads belong to the same set class, which is called set class $(0 \mid 5)$ or set class 3-4
- All pitch class sets related by transposition or inversion belong to the same set class

Set Theory

- Some atonal music is organized using twelve-tone rows, but this method was not developed until the 1920s
- Atonal music before this time was freely atonal, and more difficult for analysts to describe
- Modern music theorists have developed a way of describing this atonal music which we call pitch-class set theory (or just set theory)
- Set theory takes quite a while to figure out and requires some mathematical skills; but if you are interested in learning more about how atonal music is organized, it is a necessary skill to acquire
-

Pitch class sets

- Set theory involves the segmentation of a piece of music into different groups of pitches called pitch class sets (or just pc sets)
, We might group notes that are rhythmically close together, that are in the same gesture or phrase, are in the same register, have the same timbre, etc.
- We name the set of pitches in the group and compare it to other sets of pitches, looking for patterns
- These pc sets are written by listing all of their pitches, separated by commas, enclosed in parentheses ($B, G, G \sharp$)
Pitch class sets give us a way of describing any combination of pitches systematically
-

Normal order

- There are three steps involved in figuring out what set class a pitch class set belongs to.
- Step I: Find the normal order of the pitches in the set
* Arrange the pitches into their most compact ascending order to get the normal order
* Compare the different ascending orderings and choose the one with the smallest interval from bottom to top
, Brackets are used to indicate a pc set that is in normal order - Example: the normal order of pc set (B,G\#, G) is [G, G\#, B]
- If there is a tie in this first step, choose the ordering that is most compact to the left (with the smallest intervals first)

Best normal order

- Step 2: Find the best normal order by comparing the normal order of the original set with the normal order of the inverted form of the set
, In set theory, a set and its inversion are considered related
- One way to invert a pc set is to convert the pitch names to pitch classes, and then subtract each pitch class from 12
, Example: $[\mathrm{G}, \mathrm{G} \#, \mathrm{~B}]=[7,8,1 \mathrm{I}]$

1) $(12-7=5 ; 12-8=4 ; 12-11=1)$
, The inverted set is $[5,4,1]$
p Find the normal order of the inverted set $=[1,4,5]$
, The best normal order is the version of the set that is most compacted to the left (original or inverted) $=[7,8, \mathrm{II}]$

Prime form

- Step 3: Find the prime form (the form of the set that is used to represent all of the others)
There are as many as 24 pc sets that are related to a prime form- 2 transpositions and their inversions-all of these belong to the same set class
* To find the prime form, take the best normal order and begin it on 0 , calculating the distance between pitches in semitones
, The prime form is represented by numbers in parentheses with no commas
, Example: the prime form of $[G, G \sharp, B]$ or $[7,8,1 I]$ is (0 I 4)
- As if this weren't complicated enough, we generally refer to set classes not by their prime form, but by their Forte number $($ see Appendix C) $\quad(0 \mid 4)=$ set class 3-3

