

Intervals

Intervals

- · An interval is the distance between two pitches
 - A harmonic interval is the distance between two pitches that sound together
 - A melodic interval is the distance between two pitches

- To describe these intervals, we use interval names that consist of two main parts:
 - An interval size
 - · An interval quality

Interval size

- The size of an interval is the number of letter names contained in the interval
 - For example, the size of the interval between C and F is 4, because we can count four letter names from bottom to top (C-D-E-F)
 - We would also call this a fourth

• The interval sizes are as follows:

unison	second	third	fourth	fifth	sixth	seventh	octave	
5.00	æ	8	o Đ	0 0	0 0	9 9	o e	-
1	2	3	4	5	6	7	8	

Interval quality

- In addition to the generic size of an interval, we can also differentiate between different interval qualities
 - Example: the intervals C-D[,] and C-D are both seconds, but they sound different - they have different qualities

- · An interval's quality is determined by the number of half steps in the interval
 - Example: C-D^b contains I half step, so it is a *minor* second; C-D contains 2 half steps, so it is a major second

Interval quality

• There are five different types of interval qualities

 Perfect intervals 	(P)
 Major intervals 	(M)
 Minor intervals 	(m)
 Augmented intervals 	(A or +)
• Diminished intervals	(d or $^{\circ}$)

Augmented and diminished intervals

- An interval that is one half-step *larger* than perfect is augmented
 - You can augment a perfect interval by raising the top note or lowering the bottom note by a half-step

- An interval that is one half-step *smaller* than perfect is **diminished**
 - You can diminish a perfect interval by lowering the top note or raising the bottom note by a half-step

Major and minor intervals

- The other interval sizes (seconds, thirds, sixths, and sevenths) *cannot* be perfect
- Instead, seconds, thirds, sixths, and sevenths will be either **major** or **minor**
 - $\circ~$ Minor intervals are a half-step smaller than major intervals
 - Major intervals are a half-step larger than minor intervals

Augmented and diminished intervals

- Like perfect intervals, major and minor intervals can be augmented or diminished
- An interval that is one half-step *larger* than a major interval is *augmented*
- An interval that is one half-step *smaller* than a minor interval is *diminished*

smallest ----- largest

Diminished – Perfect – Augmented Diminished – Minor – Major – Augmented

Major and minor seconds and thirds

It is easy to count half steps for seconds and thirds

- A minor second is a half step
- A major second is a whole step
- A minor third is three half steps
- A major third is four half steps
- It is important to learn how to recognize thirds quickly, since chords are built out of thirds

M6

M7

P8

m7

P5

m6

Interval inversions

- One quick way to determine the quality of larger intervals is to *invert* them
- You invert an interval by flipping it around a fixed axis
 - Method I: Move the bottom note *above* the top note by shifting it *up* an octave
 - Method 2: Move the top note below the bottom note by shifting it down an octave

• In either case, the note names of the two pitches involved DO NOT CHANGE

Interval inversions

- When you invert an interval:
 - Unisons invert to octaves
 1 + 8 = 9
 - 2nds invert to 7ths
 2 + 7 = 9
 - 3rds invert to 6ths 3+6=9
 - 4ths invert to 5ths 4+5=9
 - NOTE: The two interval sizes always add up to 9!
- When inverting an interval, the interval qualities also change consistently:
 - Perfect intervals invert to perfect intervals
 - Major intervals invert to minor (and vice versa)
 - Augmented intervals invert to diminished (and vice versa)

Enharmonic intervals

- Intervals that have the same sound but are spelled differently are called *enharmonic intervals*
 - For example, the diminished fifth and the augmented fourth both contain 6 half steps (sounding identical)

This interval (A4/d5) is also known as the *tritone* (Tt)

 Intervals can have the same number of half steps but different spellings—these should be considered distinct intervals (with different names)

Compound intervals

• Intervals that are larger than an octave are called compound intervals

(Compound	1 Intervals						
2	0	0	-0	0	•	Ω	<u>•</u>	-
9	0	0	Ŷ	÷	Ð	Ð	Ð	Ξ
	M9	M10	P11	P12	M13	M14	P15	

• Compound intervals are often labeled in terms of their *simple* equivalents (by removing an octave)

Their simple equivalents

Compound intervals

- To spell or identify a compound interval:
 - Step 1: remove an octave from the compound interval to get the related simple interval
 - Step 2: the compound interval will have the same quality as the simple interval
 - $^\circ~$ Step 3: add 7 to the simple interval to get the size of the compound interval

